

DPP – 6

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/WqijpBRMccA

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/36

Q 1. A wedge of mass M is pushed with an constant acceleration of a = gtanq along asmooth horizontal surface and a block of mass m is projected down the smooth incline of the wedge with a velocity V relative to the wedge.

(a) The time taken by the block to cover distance L on the incline plane is

(b) The time taken by the block to cover distance L on the incline plane is

(c) The normal reaction between the block and wedge is mg secq

(d) The horizontal force applied on the wedge to produce acceleration a is (M + m) g tang.

A man goes up in a uniformly accelerating lift. He returns downward with the lift Q 2. accelerating at the same rate. The ratio of apparent weighs in the two cases is 2:1. The acceleration of the lift is -

(a) g/3

(b) g/4

(c) g/5

(d) g/6

A block can slide on a smooth inclined plane of inclination q kept on the floor of a Q 3. lift. When the lift is descending with a retardation a. the acceleration of the block relative to incline is -

(a) $(g + a) \sin q$

(b) (g-a)

(c) g sin q

(d) $(g - a) \sin q$

Q 4. Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to block of mass M as shown in figure. The magnitude of force P is -

(a) (M + m) g tan b

(c) mg cos b

 $(d) (M + m) \csc b$

hysicsaholics

- Q 5. Two weights w_1 and w_2 are suspended from the ends of a light string passing over a smooth fixed pulley. If the pulley is pulled up at an acceleration g, the tension in the string will be-
 - (a) $4w_1 w_2 / (w_1 + w_2)$
 - (b) $2w_1 w_2 / (w_1 + w_2)$
 - (c) $(w_1 w_2) / (w_1 + w_2)$
 - (d) $w_1 w_2 / \{2 (w_1 + w_2)\}$
- Q 6. A pearl of mass m is in a position to slide over a smooth wire. At the initial instant the pearl is in the middle of the wire. The wire moves linearly in a horizontal plane with an acceleration *a* in a direction having angle q with the wire. The acceleration of the pearl w.r.t. wire is—

- (a) $g \sin q a \cos q$
- (c) $g \sin q + a \cos q$
- (b) g sin q g cos q
- (d) $g \cos q + a \sin q$
- Q 7. A particle is observed from two frames S_1 and S_2 . The graph of relative velocity of S_1 with respect to S_2 is shown in figure. Let F_1 and F_2 be the pseudo forces on the particle when seen from S_1 and S_2 respectively. Which one of the following is not possible?

- (a) $F_1 = 0$, $F_2^{1} = 0$
- (b) $F_1 = 0$, $F_2 = 0$
- (c) F_1 1 1 1 1 1 2 1 1 2
- (d) $F_1 = 0$, $F_2 = 0$
- Q 8. A particle slides down a smooth inclined plane of elevation a. The incline is fixed end to end in an elevator of base length 1 accelerating up with acceleration a_0 . Assume at t = 0 the particle is at the top of the incline then—
 - (a) the particle has to travel a length 1 cosa with acceleration $(g + a_0)$ sina down the incline in a time $\sqrt{\frac{\ell}{(g+a_0)\sin 2\alpha}}$
 - (b) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in a time $\sqrt{\frac{2\ell}{a_0 \sin 2\alpha}}$
 - (c) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in a time $\sqrt{\frac{2\ell}{a_0\sin 2\alpha}}$
 - (d) the incline offers a normal reaction $m(a_0 + g)\cos a$ to the block so that it remains in contact with the incline.

hysicsaholics

A block of mass 1 kg is at rest relative to a smooth wedge moving leftwards left with Q9. constant acceleration $a = 5 \text{ m/s}^2$. Let N be the normal reaction between the block and the wedge. Then $(g = 10 \text{ m/s}^2)$

- (a) $N = 5\sqrt{5} \text{ N}$
- (b) N = 15 N
- (c) $\tan \theta = \frac{1}{2}$ (d) $\tan \theta = 2$
- Q 10. A pendulum of mass m is hanging from the ceiling of a car having an acceleration a₀ with respect to the road in the direction shown. If angle made by the string with the vertical is θ , find tan θ ?

(a)	a_{o}/σ

- (b) $a_0/2g$
- (c) $2 a_0/g$ (d) none of these

Q.1	a,c,d	Q.2	a	Q.3 a	Q.4	a	Q.5 a	ì
Q.6	a	Q.7	d	Q.8 d	Q.9	a,c	Q.10	a