

DPP - 6

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/42

https://youtu.be/WqijpBRMccA

https://physicsaholics.com/note/notesDetalis/36

Q 1. A wedge of mass M is pushed with an constant acceleration of $\mathrm{a}=\mathrm{gtanq}$ along a smooth horizontal surface and a block of mass m is projected down the smooth incline of the wedge with a velocity V relative to the wedge.

(a) The time taken by the block to cover distance S on the incline plane is $\frac{L}{V}$
(b) The time taken by the block to cover distance L on the incline plane is $\sqrt{\frac{2 L}{g \sin \theta}}$
(c) The normal reactionbetween the block and wedge is mg secq
(d) The horizontalforce applied on the wedge to produce acceleration a is $(M+m) g$ tanq.

Q 2. A man goes up in a uniformly accelerating lift. He returns downward with the lift accelerating at the same rate. The ratio of apparent weighs in the two cases is $2: 1$.
The acceleration of the lift is -
(a) $g / 3$
(b) g/4
(c) $g / 5$
(d) $g / 6$

Q 3. A block can slide on a smooth inclined plane of inclination q kept on the floor of a lift. When the lift is descending with a retardation a. the acceleration of the block relative to incline is -
(a) $(g+a) \sin q$
(b) $(g-a)$
(c) $g \sin q$
(d) $(g-a) \sin q$

Q 4. Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to block of mass M as shown in figure. The magnitude of force P is -
(a) $(M+m) g \tan b$
(c) $m g \cos b$
(b) $g \tan b$
(d) $(M+m) \operatorname{cosec} b$

Q 5. Two weights w_{1} and w_{2} are suspended from the ends of a light string passing over a smooth fixed pulley. If the pulley is pulled up at an acceleration g, the tension in the string will be-
(a) $4 w_{1} w_{2} /\left(w_{1}+w_{2}\right)$
(b) $2 w_{1} w_{2} /\left(w_{1}+w_{2}\right)$
(c) $\left(w_{1}-w_{2}\right) /\left(w_{1}+w_{2}\right)$
(d) $w_{1} w_{2} /\left\{2\left(w_{1}+w_{2}\right)\right\}$

Q 6. A pearl of mass m is in a position to slide over a smooth wire. At the initial instant the pearl is in the middle of the wire. The wire moves linearly in a horizontal plane with an acceleration a in a direction having angle q with the wire. The acceleration of the pearl w.r.t. wire is-

(a) $g \sin q-a \cos q$
(b) $g \sin q-g \cos q$
(c) $g \sin q+a \cos q$
(d) $g \cos q+a \sin q$

Q 7. A particle is observed from two frames S_{1} and S_{2}. The graph of relative velocity of S_{1} with respect to S_{2} is shown in figure. bet F_{1} and F_{2} be the pseudo forces on the particle when seen from S_{1} and S_{2} respectively. Which one of the following is not possible?
(a) $\mathrm{F}_{1}=0, \mathrm{~F}_{2}{ }^{1} 0$
(b) $\mathrm{F}_{1} 10, \mathrm{~F} 2=0$
(c) $F_{1}{ }^{1} 0, \mathrm{~F}_{2}{ }^{1} 0$
(d) $\mathrm{F}_{1}=0, \mathrm{~F} 2=0$

Q 8. A particle slides down a smooth inclined plane of elevation a. The incline is fixed end to end in an elevator of base length 1 accelerating up with acceleration a_{0}.
Assume at $t=0$ the particle is at the top of the incline then-
(a) the particle has to travel a length 1 cosa with acceleration $\left(\mathrm{g}+a_{0}\right)$ sina down the incline in a time $\sqrt{\frac{\ell}{\left(g+a_{0}\right) \sin 2 \alpha}}$
(b) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration $g \sin \alpha$ down the incline in a time $\sqrt{\frac{2 \ell}{a_{0} \sin 2 \alpha}}$
(c) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration $g \sin \alpha$ down the incline in a time $\sqrt{\frac{2 \ell}{a_{0} \sin 2 \alpha}}$
(d) the incline offers a normal reaction $\mathrm{m}\left(a_{0}+\mathrm{g}\right) \cos$ a to the block so that it remains in contact with the incline.

Q 9. A block of mass 1 kg is at rest relative to a smooth wedge moving leftwards left with constant acceleration $a=5 \mathrm{~m} / \mathrm{s}^{2}$. Let N be the normal reaction between the block and the wedge. Then $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) $N=5 \sqrt{5} \mathrm{~N}$
(b) $N=15 \mathrm{~N}$
(c) $\tan \theta=\frac{1}{2}$
(d) $\tan \theta=2$

Q 10. A pendulum of mass m is hanging from the ceiling of a car having an acceleration a_{o} with respect to the road in the direction shown. If angle made by the string with the vertical is θ, find $\tan \theta$?
(a) $\mathrm{a}_{0} / \mathrm{g}$
(b) $a_{0} / 2 g$
(c) $2 \mathrm{a}_{0} / \mathrm{g}$
(d) none of these

Answer Key

Q. 1	a,c,d	Q. 2	a	Q. 3	a	Q. 4	a	Q. 5
a								
Q.6 a	Q. 7	d	Q. 8	d	Q.9	a.c	Q.10	a

